
On oupled �eld modelingW. Ceot, M.Sera�n1 IntrodutionMany real life phenomena and proesses are of oupled, often multi-physial nature.In order to reprodue the most important physial e�ets they have to be desribed byvarious �elds that interat in spae and time and are governed by di�erent laws involv-ing dependent variables. Therefore they require advaned mathematial formulations,numerial methods and omputational tehniques [1, 3, 5℄. The objetive of this reportis to present general lassi�ation of oupled �elds problems and details of formulationas well as disretization for a seleted example.2 Classi�ation of oupled �eld problemsA brief preliminary lassi�ation of oupled �eld problems is presented in this setion.The lassi�ation was inspired by paper by Hameyer et al. [3℄.Considering type of physial e�ets aounted for one may distinguish the followingproblems:1. Exlusively mehanial problems due to independent treatment of
• displaement and stress
• displaement, strain and stress.2. Mehanial proesses oupled with other physial e�ets, that indue strain dis-tortions in solids resulting from e.g.
• temperature hange → thermo-mehanial problems
• shrinkage or expansion of a omposite omponent (e.g. shrinkage of onrete,reinforement rust development in onrete)→ hemo-mehanial problems.3. Fluid-struture interation (porous media, aeroelastiity, o�shore strutures, ...)

→ �uid-solid oupling.4. Aousti-elasti problems.5. Bio-heat generation and transfer.6. Eletro-mehanial problems.7. More than two-�eld problems, like thermo-hydro-mehanial, welding (CFD, EM,heat, solidi�ation), eletro-magneto-�uid.1



8. Other.The above presented lassi�ation may be illustrated graphially (Fig. 1). Me-hanis is here in the entral position sine displaements, strains and stresses are ofprimary interest in ivil engineering.
PSfrag replaements mehanissolid�uid

hemial reationsthermal-proessesbio-proesses

aoustis eletromagnetisFigure 1: Graphial presentation of systemati for seleted oupled problems.Domain of analysis may lead to:1. multi-domain (oupling on an interfae)2. one-domain (oupling in the bulk).Sale, whih is aounted for, lassi�es omputation as1. one sale analysis2. multisale analysis.Despite the forward models also inverse problems, sensitivity analysis, optimization orunertainty are onsidered.In order to illustrate oupled �eld modeling let us onsider the following exemplaryproblems:A � inompressible materialB � shrinkage of onrete with thermo-mehanial e�ets.The �rst problem is exlusively mehanial of stationary type and its main di�ultyis material inompressibility (Poisson ratio ν = 0.5) resulting generally in impossibilityof expressing stresses in terms of displaements. The seond problem involves twophysial e�ets � mehanial and hemial, and the oupling results from mehanialdeformations indued by hemial reations.2



3 Mathematial modelA variety of physial �elds present in the oupled �eld problems makes the orre-sponding mathematial models more sophistiated than in the ase of lassial e.g.mehanial proesses. In this setion we present the most important mathematialissues of oupled problems.1. Energy spaes used in formulations are the following:
• L2(Ω) (e.g. displaements, temperature de�ned by �rst order equations) �spae of square integrable funtions, ontinuity is not required
• H1(Ω) (e.g. displaements, temperature de�ned by seond order equations)� spae of funtions with square integrable �rst derivatives, ontinuity isrequired
• H1(url, Ω) (e.g. eletri or magneti �elds) � spae of vetor valued fun-tions with square integrable url, ontinuity of tangential omponent is re-quired
• H1(div, Ω) (e.g. stresses) � spae of vetor (tensor) funtions with squareintegrable divergene, ontinuity of normal (tration) omponent is required.2. Coupling between the �elds that are used may be
• weak (alled also one-way or load transfer or loose) � dependent variablesan be eliminated (mixed formulations resulting from operator splitting)
• strong (alled also two-way or diret or tight) � dependent variables usuallyannot be eliminated.3. Dependent variables result from
• either physial problem (e.g. displaement and temperature)
• or formulation itself (e.g. displaement and stresses, stresses and Lagrangemultipliers).The exemplary problem formulations are shown below.A � mixed formulation e.g. Hellinger�Reissner priniple: �nd stress �eld σ ∈ H1

t̂
(div,Ω, S)and displaement �eld u ∈ L2(Ω,V), suh that:











∫

Ω

τ : C−1σ dΩ +
∫

Ω

div τ · udΩ =
∫

∂Ωu

τ n · ûds

∫

Ω

v · divσ dΩ = −
∫

Ω

v · bdΩ
(1)

∀ τ ∈ H1

0(div,Ω, S), ∀ v ∈ L2(Ω)
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where: C denotes elastiity tensor, H1

0
(div,Ω, S) and H1

t̂
(div,Ω, S) stand for the spaesof stresses with square integrable divergene and vanishing or equal to t̂ trations on

∂Ωt, S is the spae of seond order symmetri tensors, û is displaement known on
∂Ωu, ∂Ωu ∪ ∂Ωt = ∂Ω, ∂Ωu ∩ ∂Ωt = ∅.B � thermomehanis with shrinkage: �nd u ∈ H1

0
(Ω) +h and Θ ∈ H1

0
+ T , suh that:











∫

Ω

ε(v) : C ε(u) dΩ −
∫

Ω

tr(ε(v)) cΘ dΩ =
∫

∂Ωt

vq ds+
∫

Ω

ε(v) : C εc,as dΩ

∫

Ω

ψ k∇Θ dΩ =
∫

∂Ωs

ψS ds
(2)

∀ v ∈ H1

0
(Ω), ∀ ψ ∈ H1

0
(Ω)where: k is thermal ondutivity, c denotes thermal expansion oe�ient, S is a heatsoure, εc,as is the example of onrete shrinkage [4℄, i.e.

εc,as = εc,as · I (3)
εc,as = εc,aso(fcm) · βas(t), I is the identity matrix

εc,aso(fcm) = −αas −

(

fcm

fcmo

6 + fcm

fcmo

)2.5

· 10−6 (4)
βas(t) = 1 − exp

[

−0.2

(

t

t1

)0.5
] (5)where: fcm is the average strength of onrete after 28 days, αas is a oe�ient de-pending on the type of ement used.4 ApproximationAppropriate mathematial formulation (existene of solution) does not, in general,guarantee onvergene and therefore possibility of obtaining reliable numerial results.Therefore, additionally the following onditions have to be satis�ed1. Approximability - the best approximation error approahes zero when number ofDOF approahes in�nity (omplete polynomials satisfy this ondition)2. Stability veri�ed by the inf-sup ondition or the de Rham diagram ommutativityor interior approximation for ellipti problemsFurther numerial issues that should be arefully onsidered to obtain e�ient nu-merial tehniques for oupled �eld problems inlude:1. Algorithm

• diretly oupled (one system of equations)4



• staggered (separate systems of equations)2. Methods (exlusively FEM or FEM+BEM, e.g. for in�nite domains)3. Compatible meshes either in the bulk or over the interfae4. Domain deompositionMixed formulation used in the example problem A requires a areful seletion ofapproximation funtions. First, the symmetry of stresses annot be enfored a-prioribut in a weak sense [2, 6℄. Therefore formulation (1) must be transformed to thefollowing form: �nd σ ∈ H1

t̂
(div,Ω,M), u ∈ L2(Ω,V) and tensor valued Lagrangemultiplier p ∈ L2(Ω,K) suh that:























∫

Ω

τ : C−1σ dΩ +
∫

Ω

div τ · udΩ +
∫

Ω

τ · p dΩ =
∫

∂Ωu

τ n · ûds

∫

Ω

v · divσ dΩ = −
∫

Ω

v · b dΩ

∫

Ω

q · σ dΩ = 0

(6)
∀ τ ∈ H1

0
(div,Ω,M), ∀ v ∈ L2(Ω,V), ∀ q ∈ L2(Ω,K)where M is the spae of seond order (now, not neessary symmetri) tensors, K is thespae of skew-symmetri tensors. The matrix representation looks as follows:




A B C

BT
0 0

CT
0 0









σ

u

p



 =





c

d

0



 (7)Formulation (6) was used for 2D problems with disretization desribed below. 9node quadrilateral elements, shown shematially in Fig.2, were used. The nodes areordered in the following way:
• vertex nodes: a1, a2, a3, a4 (used only for geometry)
• edge nodes: a5, a6, a7, a8

• middle node: a9.
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Figure 2: Master �nite element K̂.All shape funtions are de�ned as produts of the following two sets of 1D funtionsthat ontain integrated Legendre polynomials
ψ̂1(t) = 1 or ϕ̂1(t) = 1 − t

ψ̂2(t) = t− 1

2
ϕ̂2(t) = t

(8)supplemented with the following higher order shape funtions
ψ̂3(t) = ϕ̂3(t) = t(t− 1)

ψ̂4(t) = ϕ̂4(t) = t(t− 1)(t− 2)
. . .

(9)where t ∈ [0, 1].Salar shape funtions ĝ1, . . . , ĝ9 related to nodes a1, . . . , a9 (see Fig.2) are on-struted in the following way
ĝ1(ξ, η) = ϕ̂2(ξ) ϕ̂1(η)
ĝ2(ξ, η) = ϕ̂2(ξ) ϕ̂2(η)
ĝ3(ξ, η) = ϕ̂1(ξ) ϕ̂2(η)
ĝ4(ξ, η) = ϕ̂1(ξ) ϕ̂1(η)
ĝ5(ξ, η) = ϕ̂2(ξ) ϕ̂3(η)
ĝ6(ξ, η) = ϕ̂3(ξ) ϕ̂2(η)
ĝ7(ξ, η) = ϕ̂1(ξ) ϕ̂3(η)
ĝ8(ξ, η) = ϕ̂3(ξ) ϕ̂1(η)
ĝ9(ξ, η) = ϕ̂3(ξ) ϕ̂3(η)

(10)

6



Additionally, bilinear shape funtions that are used for approximation of stresses,are de�ned in the following way:̂
e1(ξ, η) = ϕ̂2(ξ) ψ̂1(η)

ê2(ξ, η) = ϕ̂2(ξ) ψ̂2(η)

ê3(ξ, η) = ψ̂1(ξ) ϕ̂2(η)

ê4(ξ, η) = ψ̂2(ξ) ϕ̂2(η)
· · ·

(11)One of the shape funtions used for stress approximation, is shown in Fig. 3.Suh an approximation enables enforement of only trations ontinuity. There is noassumption about stress tensor ontinuity.
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Figure 3: FE disretization with 4 elements. A basis shape funtion for stress approx-imation.Let us onsider a plane stress state problem presented in Fig. 4. The model was�xed on the left side and loaded by onstant loading on the top. Material data areas follows: Young modulus E = 200 GPa, Poisson ration ν = 0.5. Both mixed anddisplaement formulations were used to ompare results (Fig. 5). One may observefaster onvergene for the mixed approah.PSfrag replaements
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Figure 4: Plane stress state problem. Boundary onditions.7
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Figure 5: Plate. Convergene of solution norms.5 SoftwareThe details of approximation desribed in the previous setion in�uene algorithmsused in the omputer odes designated for analysis of oupled �eld problems. Theirmost important aspets inlude:1. Type of oupling
• Multi-disiplinary - one ode generates data for another
• Multi-physis - all data in one ode, weakly or strongly oupled problems2. Data base (boundary onditions, subdomains) should aount for the type ofoupling3. Parallel omputing may be partiularly pro�table in this type of modelingNowadays pratially all ommerial odes laim multi-physis apabilities.6 ConlusionThe lassi�ation of oupled �eld problems in this report is de�nitely not ompletesine we foused only on phenomena and proesses related to mehanis. However,8



even in so restrited oupled problems one may �nd a wide variety of pratial, real-life appliations. They always require thorough mathematial, numerial and omputeronsiderations in order to obtain reliable modeling results.Referenes[1℄ Multiphysis Simulations: Challenges and Opportunities, Park City, Utah, 2011.Report from a Workshop Sponsored by the Institute for Computing in Siene(ICiS).[2℄ D. N. Arnold, R. Falk, and R. Winther. Mixed �nite element methods for linear elas-tiity with weakly imposed symmetry.Mathematis of Computations, 76(260):1699�1723, 2007.[3℄ K. Hameyer, J. Driesen, H. De Gersem, and R. Belmans. The lassi�ation ofoupled �eld problems. IEEE Transations on Magnetis, (35):1618�1621, 1999.[4℄ W. Kiernozyki. Betonowe konstrukje masywne. Teoria. Wymiarowanie. Realiza-ja.[5℄ P. Matuszyk and L. Demkowiz. Parametri �nite elements, exat sequenes, andperfetly mathed layers. Tehnial report, ICES REPORT, 2011.[6℄ W. Qiu and L. Demkowiz. Mixed hp-�nite element method for linear elastiitywith weakly imposed symmetry. Comp. Meth. Appl. Meh. Engng, 198:3682�3701,2009.
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