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Chapter 1

Summary

Two issues related to numerical homogenization are addressed in this re-
port. Firstly, we present application of the multigrid homogenization to cou-
pled thermo-mechanical problems. Secondly the preliminary study of advan-
tages of mixed formulation based elastic-plastic analysis is discussed.

In the last years the most intensively used method for analysis of multi-
scale problems is the computational homogenization (also called the global -
local analysis) [18] that enables determination of global material parameters
of heterogeneous body on the basis of reduced, in an appropriate way, data
from the micro-scale.

In our research, presented in this report, we develop the multigrid homog-
enization [16], which may be used for both periodic and non-periodic mate-
rials. Typically, first order shape functions are used. Only recently higher
order Lagrange type bases were successfully applied and presented in paper
[24]. However, convergence of the results only for the Laplace operator in L2
norm for approximation of up to the second order was studied therein. The
bubble function based, higher order FEM approximation and a new, improved
definition of the inter grid operator for the linear elasticity, which lead to a fast
convergence of both displacements and stresses, were proposed by us in [11].
Contrary to the previous approaches the right-hand sides of the local bound-
ary value problems that define mappings, were assumed as the regular parts
of certain residues rather than arbitrarily assumed polynomials. Recently we
also extended and tested that improvement for the thermo-mechanical prob-
lems. Our main contributions consist of the improved, appropriate for bubble
functions of arbitrary order, inter grid mapping as well as an experimental
confirmation of a fast, even exponential, convergence of both displacements
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and stresses for the linear elasticity and the coupled thermo-mechanical prob-
lems. Particularly, the high accuracy of homogenized solution derivatives and
efficiency of their computation are the important advantages of the improved
multigrid homogenization in comparison with other multiscale techniques.

The mixed FEM was is also discussed due to the same convergence rate for
displacements and stresses. The Hdiv class shape functions were constructed
in two ways leading to fast convergence for solid mechanics with or without
plastic strains. Thus, it is of particular interest for heterogeneous materials or
elastic-plastic analysis.



Chapter 2

Multigrid based

homogenization

2.1 Introduction

In the last years the most intensively used method for analysis of multiscale
problems is the computational homogenization. In our research we develop
the multigrid homogenization, which may be used for both periodic and non-
periodic materials. The higher order FEM approximation at the macro-scale
and a new definition of the intergrid operators leading to a fast convergence
of both displacements and stresses was proposed in [11]. In fact only two
meshes were used, fine one that resolves locally the highly oscillating material
properties and a coarse mesh for global, low cost computation. Thus, it results
in evaluation of the mean global field as well as local fluctuations of both
displacements and stresses.

Generally, the multigrid method [8] may be used in two different ways for
heterogeneous materials. Either, in a special version accommodated for fast
varying material parameters in order to obtain efficiently a direct numerical
solution on the most fine grid [1, 20] or as an upscaling method [16, 19, 21, 7]
leading to homogenized solution on the coarsest mesh. The later method is
equivalent to the Multiscale FEM (MsFEM) [14, 24], in which special shape
functions are constructed to resolve all the details of material heterogeneities.
Typically first order shape functions are used. Only recently Soghrati and
Stanciulescu [24] used higher order Lagrange type bases, however they studied
convergence only in L2 norm for approximation of up to the second order.
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2.2 Multigrid homogenization with a new interpo-

lation operator

We present in this section the basic idea of the multigrid homogenization
after [11]. Let’s consider the well known linear elasticity problem with hetero-
geneous material: find field of displacements u(x) such that:

−
∂

∂xj

(

Cεijkl
∂uk
∂xl

)

= fi ∀ ωs ⊂ Ω (2.1)

with Dirichlet (û) and Neumann (t̂) boundary conditions on ∂ΩD and ∂ΩN
respectively (∂ΩD ∪ ∂ΩN = ∂Ω, ∂ΩD ∩ ∂ΩN = ∅) as well as continuity condi-
tions at the possible material interfaces Γ. We shall also assume L2 regularity
of f , strong ellipticity and boundedness of the material parameter tensor Cε.

The weak displacement formulation of problem (2.1) is as follows: find field

of displacements u(x) ∈ V0 + û, such that:

∫

Ω
σ(u) : ε(v) dΩ =

∫

Ω
f · v dΩ +

∫

∂ΩN
t̂ · v ds ∀v ∈ V0 (2.2)

where V0 = {v ∈ [H1(Ω)]n, v = 0 on ∂ΩD}.
Let the FEM system of algebraic equations be written in the following

matrix form

Khuh = fh (2.3)

where uh is the vector of dof and Kh,fh denote the assembled matrix and
vector.

Since solution of (2.3) may be computationally too expensive one may want
to approximate it by a coarse mesh solution (uH) defined by the following
linear equations

KHuH = fH (2.4)

However, the system (2.3) and consequently the dof vector (uH) must account,
at least implicitly, for the material heterogeneity, e.q. by the multigrid based
homogenization. It is an ”inverted” version of multigrid method since its
primary objective is the coarse rather than fine mesh solution.

Similarly as in the multigrid method, the key components of the multi-
grid homogenization are I and R mappings between fine and coarse meshes.
We proposed [11] to compute the I operator as the solution of the following
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boundary value problem defined for every coarse mesh element LH : given ψ,
find ϕ such that

∂

∂xi
Cijkl

∂Φk
∂xl

= Reg(
∂

∂xi
Cijkl

∂Ψk

∂xl
) ∀i = 1, 2, x ∈ L

Φ = Φ̂ on ∂L

(2.5)

where Φ̂ consists of scalar valued functions obtained for every nonzero trace
of all coarse element scalar shape functions ψ as the solution to the following
1D boundary value problem

d

ds
(2µ + λ)

dϕ̂

ds
= Reg

[

d

ds
(2µ+ λ)

ψ

ds

]

∀s ∈ (0, l)

ϕ̂(0) = ψ(0), ϕ̂(l) = ψ(l)

(2.6)

where Reg denotes regular part of the derivative, i.e. without distributional
part and s ∈ [0, l] stands for the parameter that defines an edge. The coefficient
2µ + λ represents material properties along an edge. It is worth mentioning
that in some papers [17] instead of the edge problem (2.16) an oversampled
domain (containing LH) in problem (??) is used to avoid the boundary layer
effect.

In practice Φ interpolants are computed numerically using the fine mesh
that complies with the material distribution and equation (2.5) may be inter-
preted as equality of residuals in interiors of all finite elements. The corre-
sponding weak form reads Φ(x) ∈ V0 + Ψ̂,

∫

Ω
σ(Φ) : ε(v) dΩ =

∫

Ω
v · Reg[divσ(Ψ)] dΩ ∀v ∈ V0 (2.7)

and defines interpolation operator that transfers M coarse element degrees
of freedom (dof) into N fine mesh dof. Such a mapping is represented by a
matrix IN×M and is used to compute the coarse element matrix KH , vector
FH and the fine mesh dof uh, whenever the coarse mesh dof vector uH is
known, namely

KH = ITKhI, FH = ITF h, uh = IuH (2.8)

where Kh denotes fine mesh, assembled only in coarse element domain LH ,
stiffness matrix. The relations (2.8)1, (2.8)2 may be easily proved defining
errors of the solutions of the systems of algebraic equations for two meshes

eh = u− uh, eH = u− uH (2.9)
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and the corresponding residual vectors

rh = fh −Khuh, rH = fH −KHuH , rH = Rrh (2.10)

Thus,

Khuh = rh, KHuH = rH (2.11)

and since

rH = Rrh = RKheh = RKhIeH (2.12)

as well as

fH = rH +KHuH = Rrh +RKhIuH = RfH (2.13)

and assuming, for the sake of KH symmetry, that R = IT one obtains prop-
erties (2.8)1, (2.8)2. It is worth mentioning that they enable computation of
coarse element meshes and vectors without additional numerical integration.

Construction of operator based interpolation is on the other hand exactly
the same procedure as construction of special shape functions in the methods
proposed by Babuška et al.[6] and developed by Hou and Wu in late nineties
[17] as so called the multiscale FEM (MsFEM). The method was further de-
veloped by Efendiev and Hou [15] as well as Soghrati and Stanciulescu [24].

2.3 Numerical examples

In this section we present results of experimentally studied accuracy and
convergence for high order FEM in multigrid homogenization.

As a first 2D example we considered a square plate with a circular hole
(Fig. 2.1). It was analyzed both directly to compute uh and by the presented
approach to obtain the homogenized uH substitute. Only one coarse element,
with shape functions of order varying from 1 to 5, was used and the fine mesh
consisted of linear triangular elements. Comparison of the stresses obtained
by both approaches (i.e. direct one and multigrid homogenization for p = 3) is
shown in Fig. 2.2 confirming qualitatively very good accuracy of the method.
The convergence of modeling error for p-enrichment of the macro element is
presented in Fig. 2.3.

In the second test the quality of homogenized solution was studied for
various discretization at micro and macro levels for both displacements and
stresses. A square domain with a circular inclusion shown in Fig. 2.4 was
assumed as the test problem.
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1

1

Figure 2.1: A unit square. Domain and boundary conditions

Figure 2.2: A unit square. Colour maps of exact (1400 dof) and homogenized
stress σxx obtained by 50 dof

Displacements and stresses computed either by the direct approach, i.e.
using the fine mesh, or by multigrid homogenization are compared in Figs
2.5-2.8. One finite element of the third order of approximation with 32 dof
was used at the macroscale. It enabled to reconstruct with satisfactory quality
displacements and stresses of the fine meshes that consisted of triangular linear
elements with 60 to 2900 dof.

In the last test presented in this section the circle-like inclusions were cen-
tered at vertices of the square domain. Comparison of displacements and
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Figure 2.3: A unit square. Convergence in L2 and energy norms

Figure 2.4: Test 2. First row - the domain with boundary conditions, material
distribution and macro scale discretization by one quadrilateral element of
1st-3rd order of approximation. Second row - fine mesh interpolant of the first
shape function for homogeneous and heterogeneous materials.

stresses, shown in Fig. 2.9, once more shows that the multigrid based homog-
enization with the new interpolation operator delivers reasonable results.
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Figure 2.5: Test 2. Displacements (top row) and stresses (bottom row) ob-
tained by fine mesh with 60 (left column) and coarse mesh with 32 (right
column) dof.

Figure 2.6: Test 2. Displacements (top row) and stresses (bottom row) ob-
tained by fine mesh with 200 (left column) and coarse mesh with 32 (right
column) dof.
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Figure 2.7: Test 2. Displacements (top row) and stresses (bottom row) ob-
tained by fine mesh with 750 (left column) and coarse mesh with 32 (right
column) dof.

Figure 2.8: Test 2. Displacements (top row) and stresses (bottom row) ob-
tained by fine mesh with 2900 (left column) and coarse mesh with 32 (right
column) dof.
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Figure 2.9: Test 3. Displacements (top row) and stresses (bottom row) ob-
tained by fine (left column) and coarse (right column) meshes.
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2.4 Coupled problems

The weakly coupled problem that models mechanical deformations result-
ing from both statical loading and steady state heat flow is considered in this
section and is analyzed by the multigrid homogenization method since both
mechanical and thermal material properties are rapidly varying in the consid-
ered domain. Thus, our problem reads: find fields of displacements u(x) and
temperature θ(x) such that:

−
∂

∂xj

[

Cεijkl

(

∂uk
∂xl

− αθδkl

)]

= fi ∀ ωs ⊂ Ω

−
∂

∂xi

(

kεij
∂θ

∂xj

)

= Q ∀ ωs ⊂ Ω

(2.14)

with mechanical Dirichlet (û) and Neumann (t̂) boundary conditions on ∂ΩD
and ∂ΩN respectively (∂ΩD ∪ ∂ΩN = ∂Ω, ∂ΩD ∩ ∂ΩN = ∅) and thermal
Dirichlet (θ̂) and Neumann (q̂) boundary conditions on ∂ΩD and ∂ΩN respec-
tively (∂ΩθD ∪ ∂ΩθN = ∂Ω, ∂ΩθD ∩ ∂ΩθN = ∅) as well as continuity conditions
for mechanical and thermal fields and theirs gradients at the possible material
interfaces Γ. We shall also assume L2 regularity of f and Q, strong ellipticity
and boundedness of the material parameter tensors Cε, kε, where superscript
ε indicates that the ratio of the smallest and largest scales in the problem may
be small ε << 1 and ωs for s = 1, . . . , N ,

∑

s ωs = Ω, denotes i-th subdomain
in which material parameters are differentiable (typically constant).

The corresponding weak formulation of problem (2.14) is as follows: find

fields of displacements and temperature u(x) ∈ V 0+ û, θ ∈ V0+ θ̂, such that:

∫

Ω
ε(v) : σ(u) dΩ −

∫

Ω
ε(v) : ε∗ dΩ =

∫

Ω
f · v dΩ +

∫

∂ΩN
t̂ · v ds ∀v ∈ V 0

∫

Ω
∇ψk∇θ dΩ =

∫

Ω
Qψ dΩ +

∫

∂ΩN
θ̂ · ψ ds ∀ψ ∈ V0

(2.15)

where V 0 = {v ∈ [H1(Ω)]n, v = 0 on ∂ΩD},
V0 = {v ∈ [H1(Ω)], v = 0 on ∂ΩθD}, ε

∗

ij = αθδij .
Similarly as in the case of purely mechanical problem the interpolation

operator is computed in two steps.
In the first step the edge values ϕ̂ are obtained for every nonzero trace of

all coarse element scalar shape functions ψ as the solution to the following 1D
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boundary value problem

d

ds
(2µ + λ)

dϕ̂

ds
−

d

ds
(2µ+ λ)αθ = Reg

[

d

ds
(2µ + λ)

dψ

ds
−

d

ds
(2µ + λ)ϕds

]

in(0, l)

d

ds
k
θ̂

ds
= Reg

(

d

ds
k
θ̂

ds

)

ϕ̂(0) = ψ(0), ϕ(l) = ψ(l)

(2.16)

where Reg denotes regular part of the derivative, i.e. without distributional
part and s ∈ [0, l] stands for the parameter that defines an edge. The coefficient
2µ + λ represents material properties along an edge.

In the second step for every vector valued shape function Ψ its vector
valued interpolant Φ is computed by solution of the Dirichlet boundary value
problem analogical to (2.5).

2.5 Numerical examples

In this section we present results of experimentally studied accuracy and
convergence for high order FEM in multigrid homogenization applied for thermo-
mechanical problem. The test problem is defined in Fig. 2.10. The results are
shown in Figs. 2.12-2.15 showing suitability of the multigrid homogenization
for taking into account thermal effects in multiscale analysis.

Figure 2.10: Thermomechanical test problem. Heterogeneous domain, me-
chanical boundary conditions (zero Dirichlet along the left edge and Neumann
along the other edges) and thermal conditions (also zero Dirichlet along the
left edge and Neumann along the other edges).
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Figure 2.11: Coupled thermomechanical test problem. Interpolants of the
coarse shape functions along the vertical, right-hand side edge for homoge-
neous and heterogeneous materials.
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Figure 2.12: Coupled thermomechanical test problem. Countour plots of a
selected coarse shape function for homogeneous and heterogeneous materials.
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Figure 2.13: Coupled thermomechanical test problem. Countour plots of di-
rectly computed horizontal displacement (”exact”) and its multigrid homoge-
nization based approximation.
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Chapter 3

Mixed finite elements

The finite elements in which the displacements and stress fields are approx-
imated independently are called mixed ones. Since, contrary to the displace-
ment version, the stresses are not computed by differentiation of the primary
variable theirs accuracy and convergence are better. Moreover, mixed elements
can easily handle problems with an incompressible material.

Applications of mixed finite elements have been developed since the sev-
enties. Let us only mention works done by Brezzi [9], Babuska [5], Crouzeix
and Raviart [13], Raviart and Thomas [23] or Arnold [3, 2, 4].

In the multiscale analysis the stresses are of particular interest, thus we
studied efficiency of mixed finite elements for both elastic and elastic-plastic
problems.

3.1 Two-dimensional mixed hp-finite elements

A brief recapitulation of mixed finite element method after [12] is presented
in this section.

Stable mixed finite elements for solid mechanics are very difficult to con-
struct since they have to provide symmetry and continuity of tractions only.
We have applied the approximation with weakly imposed symmetry [22] ex-
pecting the following advantages

- good coarse mesh accuracy for stresses
- no problems with incompressible material (ν = 0.5)
- no sensitivity against mesh distortions
- no sensitivity against heterogeneous materials with significantly different
material properties

19
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The equations of linear elasticity may be written in the following form






























ε(u) = C−1σ w Ω

divσ = −b w Ω

u = 0 na ∂ΩD

σn = t̂ na ∂ΩN

(3.1)

where:
u – displacement field
σ – stress field
ε – strain field
C – material parameter tensor
b – body forces
n – unit outward normal vector
t̂ – boundary loading

The corresponding weak formulation is the Hellinger–Reissner principle
Find σ ∈ Hq(div,Ω,S) i u ∈ L2(Ω,V ), such that:











∫

Ω

τ : C−1σ dΩ +
∫

Ω

div τ · udΩ =
∫

∂Ω

τ n · ûds

∫

Ω

v · divσ dΩ = −
∫

Ω

v · bdΩ
(3.2)

∀ τ ∈ H0(div,Ω,S), ∀ v ∈ L2(Ω)

where τ ∈ L2(Ω,S) i v ∈ L2(Ω,V ), S is a space of symmetric tensors Rn×n
sym

and V is vector space R
n. Hq(div,Ω,S) are stresses with divergence square

integrable and tractions equal to q to ∂ΩN , û is trace of displacements along
∂ΩD, ∂ΩD ∪ ∂ΩN = ∂Ω.

In the case of elastic-plastic deformations at every semi-time step the fol-
lowing problem is solved with known plastic strains εp











∫

Ω

τ : C−1σ dΩ +
∫

Ω

div τ · udΩ =
∫

∂Ω

τ n · ûds+
∫

Ω

τ : εp dΩ

∫

Ω

v · divσ dΩ = −
∫

Ω

v · bdΩ
(3.3)

For such a problem with additional plastic term we observed the same conver-
gence rate for both displacements as well as stresses and the same as for the
simpler problem (3.2) without the plastic strains.
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The test functions may be selected by considering the following system of
algebraic equations

[

Am×m Bm×n

(BT )n×m 0

]

=

[

c

0

]

(3.4)

where m ≥ n.
Stable approximation must stisfy the inf–sup condition [5] or commua-

toitivity of the de Rhama diagram [10], i.e.

C∞(Ω,S)
div

//

Πh

��

C∞(Ω,R2)

P h

��

Σh
div

// V h

where Πh, Ph are projection based interpolation operators.
Summing up the requirements for a stable mixed approximation are the

following:

- stress tensor symmetry

- traction continuity

- piecewise continuity of displacements

- commutativity of teh de Rham diagram

- local variation of approximation order

- possible adaptive mesh refinement

We have constructed the appropriate shape functions in two ways either
by explicitly enforcing the continuity of tractions [12] or by using the exact
sequence methodology. The later method is briefly described below and is a
part of the research that is currently conducted on development of the new
HP3D code.

3.2 Edge functions

The edge shape functions are defined by extending the 1D bubble shape
functions defined on the edge to the element. For tensor product elements,
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the extension involves use of a projection and the edge blending function, thus
the functions are evaluated as the following product

ϕ = ψ(ξ1, ξ2)χ̂{ξ
e[te(ξ1, ξ2)]} (3.5)

where: ψ is a blending function for the edge, χ denote 1D shape functions
defined along the edge, te is the local coordinate defining projection of point
(ξ1, ξ2) onto the edge, ξe stands for the corresponding global edge coordinate.

Thus projection and accounting for orientation are the two important steps
here. They are illustrated in Fig. 3.1.

ξ
e

ξ
e

ξ

ξ

1

2

projection
et

orientation

1(ξ  , ξ  )2

t e

Figure 3.1: Illustration of projection and edge orientation in a quad.

Eq. (3.5) implies that

∂ϕ

∂ξi
=
∂ψ

∂ξi
χ+ ψ

dχ̂

dξe
dξe

dte
∂te

∂ξi
(3.6)

The following routines are used to compute both ϕ and ∂ϕ
∂ξi

• blend quad - for ψ, ∂ψ
∂ξi

• project quad2e - for te, ∂t
e

∂ξi

3.3 Bubble functions

These functions are evaluated as the following (tensor) products

ϕ = χ1(ξ
f
1
)χ2(ξ

f
2
) (3.7)



Mixed finite elements 23

where: χk denote 1D bubble shape function (in k − th direction).
There are 8 possible orientations of a quad. They may written in the

following general form

ξf = ξf (tf ) (3.8)

Whenever the orientation should be accounted for, then the following chain
rule must be used to compute derivatives

∂ϕ

∂tfi
=

∂ϕ̂

∂ξfk

∂ξfk

∂tfi
(3.9)

where: ϕ̂ denotes a bubble function in domain [0, 1] × [0, 1]

3.4 Numerical tests

A square 2mm × 2mm domain with square like 1mm × 1mm inclusion
located in the center was analyzed constant distributed loading q = 100 kN/m.
Due to the symmetry only a quarter of that domain wa considered as shown
in Fig. 3.2. The matrix Young modulus was E = 200GPa and its Poisson
ratio ν = 0.3. Inclusion parameters were E = 200MPa and ν = 0.3.

The results obtained for both ways of deriving the shape functions were
teh same and are shown in Figs. 3.3, 3.4. All these results confirm efficiency
of the proposed version of the mixed hp-FEM.
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Figure 3.2: RVE with square like inclusion. Problem set up and deformations.

Figure 3.3: RVE with square like inclusion. Principal stresses and contour
lines of σxx.
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Figure 3.4: RVE with square like inclusion. σyx and ǫxx.



Chapter 4

Concluding remarks

We have applied the hierarchical approximation of order up to 5 for multi-
grid homogenization using a new method of the intergrid mapping construc-
tion. Whenever these mappings are well defined the coarse element stiffness
matricies and load vectors are computed by multiplication of previously eval-
uated matrices and vectors without necessity for additional integration. The
numerical experiments show a fast reduction of modeling error that is in-
evitably introduced by the homogenization. The fast convergence is observed
for both displacements and stresses while higher order of coarse scale bases are
used. We also pointed out that the multigrid homogenization is equivalent to
the MsFEM. Further development of this type of homogenization will include
application to physically and geometrically nonlinear problems as well as more
than two grid coarsening.

Also possibilities and advantages of the mixed FEM for elastic-plastic anal-
ysis with heterogeneous material were presented in this report. Two methods
of construction of appropriate H(div) shape functions were used and gave the
same convergence rates for displacements and stresses with or without plastic
strains for a selected numerical example.
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