Lab 1: Inventing algorithms

1 Length of a curve

In $\mathrm{X}-\mathrm{Y}$ plane there is a curve described by the following parametric equation:

$$
\mathbf{r}(t)=\left\{\begin{array}{l}
x(t) \\
y(t)
\end{array}\right.
$$

where $x(t)$ and $y(t)$ are continuous functions of parameter t. Assuming that parameter t changes from t_{0} to t_{1} describe an algorithm to find approximate curve length.

2 Do It Yourself

You are given the following things: pencil, compass (up to 50 cm), paper, saw, two slats, 100 cm and 20 cm , respectively. Describe, how to cut off a slat of the length of $10 \sqrt{5}$ using only these things. Find a way to cut the slat as precisely as possible.

Lab 1: Inventing algorithms

1 Length of a curve

In $\mathrm{X}-\mathrm{Y}$ plane there is a curve described by the following parametric equation:

$$
\mathbf{r}(t)=\left\{\begin{array}{l}
x(t) \\
y(t)
\end{array}\right.
$$

where $x(t)$ and $y(t)$ are continuous functions of parameter t. Assuming that parameter t changes from t_{0} to t_{1} describe an algorithm to find approximate curve length.

2 Do It Yourself

You are given the following things: pencil, compass (up to 50 cm), paper, saw, two slats, 100 cm and 20 cm , respectively. Describe, how to cut off a slat of the length of $10 \sqrt{5}$ using only these things. Find a way to cut the slat as precisely as possible.

Lab 1: Inventing algorithms

1 Length of a curve

In $\mathrm{X}-\mathrm{Y}$ plane there is a curve described by the following parametric equation:

$$
\mathbf{r}(t)=\left\{\begin{array}{l}
x(t) \\
y(t)
\end{array}\right.
$$

where $x(t)$ and $y(t)$ are continuous functions of parameter t. Assuming that parameter t changes from t_{0} to t_{1} describe an algorithm to find approximate curve length.

2 Do It Yourself

You are given the following things: pencil, compass (up to 50 cm), paper, saw, two slats, 100 cm and 20 cm , respectively. Describe, how to cut off a slat of the length of $10 \sqrt{5}$ using only these things. Find a way to cut the slat as precisely as possible.

Lab 1: Inventing algorithms

1 Length of a curve

In $\mathrm{X}-\mathrm{Y}$ plane there is a curve described by the following parametric equation:

$$
\mathbf{r}(t)=\left\{\begin{array}{l}
x(t) \\
y(t)
\end{array}\right.
$$

where $x(t)$ and $y(t)$ are continuous functions of parameter t. Assuming that parameter t changes from t_{0} to t_{1} describe an algorithm to find approximate curve length.

2 Do It Yourself

You are given the following things: pencil, compass (up to 50 cm), paper, saw, two slats, 100 cm and 20 cm , respectively. Describe, how to cut off a slat of the length of $10 \sqrt{5}$ using only these things. Find a way to cut the slat as precisely as possible.

