Lab 3: Defining and using functions

The area under a given function $f(x)$ in the range $\left[x_{a}, x_{b}\right]$ can be approximated with rectangles as shown in Figure 1. Write Octave script that will calculate the exact and approximated values of this area

Figure 1: Approximation of area under a function $f(x)$.
assuming the following:

- Function $f(x)$ is given in the general form:

$$
f(x)=a x^{2}+b x+c
$$

with coefficients a, b, c.

- The area S under given function f in the range $\left[x_{a}, x_{b}\right]$ is given by the expression:

$$
S\left(x_{a}, x_{b}\right)=\frac{a}{3}\left(x_{b}^{3}-x_{a}^{3}\right)+\frac{b}{2}\left(x_{b}^{2}-x_{a}^{2}\right)+c\left(x_{b}-x_{a}\right)
$$

- Assume that the area S is approximated with 4 rectangles of equal width.
- Important: In your script implement 3 functions:
i) function which calculates values $f(x)$,
ii) function which calculates approximated value of $S\left(x_{a}, x_{b}\right)$
iii) function which calculates exact value of $S\left(x_{a}, x_{b}\right)$.

