Information Technology: Final exam 13.02.2015

Question 1

An unit matrix \mathbf{I} of size (n, n) is split at the r -th row and the c-th column into two matrices as shown in the figure:

Assuming that the conditions $n \geq 2, r<n$, and $c<n$ are always true, write an Octave function that for given n, r, c returns the matrices \mathbf{A} and \mathbf{B}.
Hint: Unit matrix is a square matrix with value 1 for diagonal elements and 0 elsewhere.

Question 2

Write Octave function that calculates the sum of N subsequent square numbers starting from 1. Write a program to show usage of this function. Hint: a square number is an integer that is the square of an integer.

Question 3

A sequence is given be the recursive formula:

$$
\begin{aligned}
& x_{0}=2 \\
& x_{1}=3 \\
& x_{k}=f\left(x_{k-1}\right)+g\left(x_{k-2}\right) \text { for } k \geq 2
\end{aligned}
$$

where functions $f(x)$ and $g(x)$ are given by:

$$
\begin{aligned}
& f(x)=x^{2}-3 \sin (x) \\
& g(x)=(1+x) \cos (x)
\end{aligned}
$$

Define the above functions in Octave and then use them in a program that calculates the value of

$$
\sum_{i=1}^{i=100} x_{i}
$$

